Saeed Iqbal      Research Associate

Sex: Male

Email: saeed.iqbal@szu.edu.cn

Office: S215

Talent title:

Final degree: Ph.D. in Computer Science

Tel:

Advisor qualification: Ph.D.

Research Interest:

Machine Learning, Continual Learning, Explainable AI and Healthcare Data Analysis.

Undergraduate Course:

Graduate Course:

Education:

Ph.D. in Computer Science
MS in Computer Science
BS in Information Technology

Career:

Research Associate – Shenzhen University
Assistant Professor – University of Central Punjab, Lahore – 2013-2024

Project:

Revolutionizing Skin Cancer Diagnosis with AI: Enhancing Performance and Preserving Patient Privacy

Publication:

1.Iqbal, S., Qureshi, A. N., Alabdultif, A., Khan, F., & Jhaveri, R.H. (2025). *Federated Autoencoder Model for Secure Medical Image Analysis with Privacy Preservation and Assurance*. IEEE Journal of Biomedical and Health Informatics. DOI: 10.1109/jbhi.2025.3329231 (Impact Factor: 7.7).  
2.Iqbal, S., Qureshi, A. N., Alhussein, M., Aurangzeb, K., Mahmood, A., & Azzuhri, S. R. (2024). *Dynamic SelectOut and voting-based federated learning for enhanced medical image analysis*. Machine Learning: Science and Technology. DOI: 10.1088/2632-2153/ada0a6 (Impact Factor: 6.0).  
3.Iqbal, S., Qureshi, A. N., Alhussein, M., Aurangzeb, K., Zubair, M., & Hussain, A. (2024). *A Novel Reciprocal Domain Adaptation Neural Network for Enhanced Diagnosis of Chronic Kidney Disease*. Expert Systems. DOI: 10.1111/exsy.13750 (Impact Factor: 3.0).  
4.Choudhry, I. A., Iqbal, S., Alhussein, M., Aurangzeb, K., Qureshi, A. N., & Naqvi, R. A. (2024). *A Novel Interpretable Graph Convolutional Neural Network for Multimodal Brain Tumour Segmentation*. Cognitive Computation. DOI: 10.1007/s12559-024-10387-w (Impact Factor: 4.30).  
5.Alharbi, T., & Iqbal, S. (2024). *Novel hybrid data-driven models for enhanced renewable energy prediction*. Frontiers in Energy Research. DOI: 10.3389/fenrg.2024.1416201 (Impact Factor: 2.6).  
6.Zubair, M., Owais, M., Mahmood, T., Iqbal, S., Usman, S. M., & Hussain, I. (2024). *Enhanced Gastric Cancer Classification and Quantification Interpretable Framework Using Digital Histopathology Images*. Scientific Reports. DOI: 10.1038/s41598-024-73823-9 (Impact Factor: 3.8).  
7.Choudhry, I. A., Iqbal, S., Alhussein, M., Qureshi, A. N., Aurangzeb, K., & Naqvi, R. A. (2024), Transforming Lung Disease Diagnosis with Transfer Learning Using Chest X-Ray Images on Cloud Computing, Expert Systems, Wiley, (2024), doi:10.1111/exsy.13750, impact factor: 3.0, Wiley.
8.Iqbal, S., Qureshi, A. N., Alhussein, M., Aurangzeb, K., & Khan, F. Akbar, M. A. (2024), From Data to Diagnosis: Enhancing Radiology Reporting with Clinical Features Encoding and Cross-Modal Coherence, IEEE ACCESS, IEEE, (2024), doi:10.1109/ACCESS.2024.3449929, impact factor: 3.4, IEEE.
9.Choudhry, I. A., Iqbal, S., Alhussein, M., Aurangzeb, K., Qureshi, A. N., & Anwar, M. S., & Khan, F. (2024). *Privacy-preserving AI for early diagnosis of thoracic diseases using IoTs: A federated learning approach with multi-headed self-attention for facilitating cross-institutional study*. Internet of Things. DOI: 10.1016/j.iot.2024.101296 (Impact Factor: 6.0).  
10.Iqbal, S., Qureshi, A. N., Alhussein, M., Aurangzeb, K., Choudhry, I. A., & Anwar, M. S. (2024). *Hybrid deep spatial and statistical feature fusion for accurate MRI brain tumor classification*. Frontiers in Computational Neuroscience. DOI: 10.3389/fncom.2024.1423051 (Impact Factor: 2.1).  
11.Iqbal, S., Qureshi, A. N., Aurangzeb, K., Alhussein, M., Zhang Y., & Syed, I. (2024). *Adaptive Magnification Network for Precise Tumor Analysis in Histopathological Images*. Computers in Human Behavior. DOI: 10.1016/j.chb.2024.108222 (Impact Factor: 9.9).  
12.Iqbal, S., Qureshi, A. N., Aurangzeb, K., Alhussein, M., Wang, S., Anwar, M. S., & Khan, F. (2024). *Hybrid Parallel Fuzzy CNN Paradigm: Unmasking Intricacies for Accurate Brain MRI Insights*. IEEE TRANSACTIONS ON FUZZY SYSTEMS. DOI: 10.1109/TFUZZ.2024.3372608 (Impact Factor: 11.9).  
13.Iqbal, S., Qureshi, A. N., Alhussein, M., Aurangzeb, K., Haider, S. I., & Rida, I. (2023). *AMIAC: Adaptive Medical Image Analyses and Classification, a Robust Self-Learning Framework*. Neural Computing and Applications. DOI: 10.1007/s00521-023-09209-1 (Impact Factor: 6.0).  
14.Iqbal, S., Qureshi, A. N., Alhussein, M., Aurangzeb, K., & Anwar, M.S. (2023). *AD-CAM: Enhancing Interpretability of Convolutional Neural Networks with a Lightweight Framework - From Black Box to Glass Box*. IEEE Journal of Biomedical and Health Informatics. DOI: 10.1109/jbhi.2023.3329231 (Impact Factor: 7.7).  
15.Iqbal, S., Qureshi, A. N., Alhussein, M., Mustafa, G., Aurangzeb, K., Javeed, K., & Naqvi, R. A. (2023). *Privacy-Preserving Collaborative AI for Distributed Deep Learning with Cross-sectional Data*. Multimedia Tools and Applications. DOI: 10.1007/s11042-023-17202-y (Impact Factor: 3.6).  
16.Choudhry, I. A., Qureshi, A. N., Aurangzeb, K., Iqbal, S., & Alhussein, M. (2023). *Hybrid Diagnostic Model for Improved COVID-19 Detection in Lung Radiographs Using Deep and Traditional Features*. Biomimetics, 8(5), 406. DOI: 10.3390/biomimetics8050406 (Impact Factor: 4.5).  
17.Iqbal, S., Qureshi, A. N., Alhussein, M., Mustafa, G., Aurangzeb, K., & Khan, T. M. (2023). *Fusion of Textural and Visual Information for Medical Image Modality Retrieval using Deep Learning-Based Feature Engineering*. IEEE ACCESS. DOI: 10.1109/ACCESS.2023.3310245 (Impact Factor: 3.9).  
18.Iqbal, S., Qureshi, A. N., Alhussein, M., Aurangzeb, K., & Kadry, S. (2023). *A Novel Heteromorphous Convolutional Neural Network for Automated Assessment of Tumors in Colon and Lung Histopathology Images*. Biomimetics, 8(4), 370. DOI: 10.3390/biomimetics8040370 (Impact Factor: 4.5).  
19.Iqbal, S., Qureshi, A. N., Li, J., Arshad, I., & Mahmood, T. (2023). *Dynamic Learning for Imbalance Data in Learning Chest X-Ray and CT Images*. HELIYON. DOI: 10.1016/j.heliyon.2023.e16807 (Impact Factor: 3.776).  
20.Iqbal, S., Qureshi, A. N., Li, J., & Mahmood, T. (2023). *On the Analyses of Medical Images using Traditional Machine Learning Techniques and Convolutional Neural Networks*. Springer Archives of Computational Methods in Engineering. DOI: 10.1007/s11831-023-09899-9 (Impact Factor: 8.171).  
21.Iqbal, S., Qureshi, A. N., Ullah, A., Li, J., & Mahmood, T. (2022). *Improving the Robustness and Quality of Biomedical CNN Models through Adaptive Hyperparameter Tuning*. Applied Sciences, 12(22), 11870. DOI: 10.3390/app122211870 (Impact Factor: 2.838).  
22.Iqbal, S., & Qureshi, A. N. (2022). *A heteromorphous deep CNN framework for Medical Image Segmentation using Local Binary Pattern*. IEEE Access. DOI: 10.1109/ACCESS.2022.3183331 (Impact Factor: 3.367).  
23.Iqbal, S., & Qureshi, A. N., Deep-Hist: Breast cancer diagnosis through histopathological images using convolution neural network, Journal of Intelligent & Fuzzy Systems, pp: 1347-1364, doi: 10.3233/JIFS-213158, impact factor: 1.739, IOS Press.
24.Iqbal, S., Qureshi, A. N., & Mustafa, G. (2022). *Hybridization of CNN with LBP for Classification of Melanoma Images*. CMC-COMPUTERS MATERIALS & CONTINUA, 71(3), 4915-4939. DOI: 10.32604/cmc.2022.023178 (Impact Factor: 3.860).  
25.Shaheen, M., Ahsan, A., & Iqbal, S. (2021). *Data Mining of Scientometrics for Classifying Science Journals*. Intelligent Automation and Soft Computing, 28(3), 873-885. DOI: 10.32604/iasc.2021.016622 (Impact Factor: 1.647).  
26.Iqbal, S., Choudhry, I. A., & Shabbir, K. (2016). *Verification of Android Permission Extension Framework using SPF and JPF*. International Journal of Computer Science and Information Security, 14(10), 340.  

Conference:

1.Iqbal, S., Choudhry, I. A., & Lodhi, A. M. (2023). *Intelligent Buffer Management Policy in Post Disaster Network Using DTN*. IEEE 25th International Multi Topic Conference (INMIC). DOI: 10.1109/INMIC60434.2023.10465769.
2.Iqbal, S., Qureshi, A. N., Aurangzeb, K., & Javeed, K. (2023). *Privacy-Preserving Collaborative AI for Distributed Deep Learning with Cross-sectional Data*. IEEE 5th International Conference on Bio-engineering for Smart Technologies (BioSMART). DOI: 10.1109/BioSMART58455.2023.10162106.  
3.Iqbal, S., Qureshi, A. N., & Akter, M. (2019, September). *Using Local Binary Patterns and Convolutional Neural Networks for Melanoma Detection*. In Proceedings of SAI Intelligent Systems Conference, London, UK. DOI: 10.1007/978-3-030-29513-4_58.
4.Iqbal, S., Qureshi, A. N., & Lodhi, A. M. (2018)., Content based video retrieval using convolutional neural network, In Proceedings of SAI Intelligent Systems Conference, London United Kingdom, (pp. 170-186), doi:10.1007/978-3-030-01054-6_12, Springer, Cham.
5.Iqbal, S., & Qureshi, A. N. (2013, December). *Labeled clustering a unique method to label unsupervised classes*. In 8th International Conference for Internet Technology and Secured Transactions (ICITST-2013). DOI: 10.1109/ICITST.2013.6750193.  
6.Iqbal, S., and Muhammad Shaheen., A machine learning based method for optimal journal classification, In Internet Technology and Secured Transactions (ICITST), 2013 8th International Conference for, pp. 259-264, doi:10.1109/ICITST.2013.6750202, IEEE.
7.Iqbal, S., Shah, S. U., Nauman, M., & Amin, M. (2013). *Extending Java Pathfinder (JPF) with Property Classes for Verification of Android Permission Extension Framework*. In 2013 IEEE 3rd International Conference on System Engineering and Technology. DOI: 10.1109/ICSEngT.2013.6650135.

Patent:

Holistic Campus Security optimized detection/tracking system using Deep Learning with commodity hardware (PTZ cameras) in
real-time environment.

Prize:

Faculty-wise Best Researcher – University of Central Punjab
Level 1 Researcher – University of Central Punjab
Secured a prestigious grant from Samsung Innovation Campus (SIC)

  • 上一篇:没有了
  • 下一篇:没有了